
TETRAHEDRON
LETTERS

Tetrahedron Letters 43 (2002) 6875–6877Pergamon

Photoisomerization of allyl ethers: syntheses of vinyl ethers
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Abstract—A synthesis of vinyl ethers through the photoisomerization of allyl ethers is described. © 2002 Published by Elsevier
Science Ltd.

Intramolecular hydrogen-abstractions initiated by the
photoexcited C�O group have found several synthetic
applications.1 Ring systems containing 3–n atoms,
spiropyrans, spirobenzofurans, lactams and some
other systems have been synthesized using this
method. These abstractions have also been investi-
gated using steroidal moieties2 and a series of O-
alkylesters of 4-benzoylbenzoic acids3 to determine the
relationship between the chain length and the site of
abstraction. In this communication, we report a facile
synthesis of vinyl ethers through the application of
hydrogen abstractions.

The allyl ethers 2a–g,4 synthesized by the alkylation
of 3-hydroxychromones 1a–g with methyl-�-bro-
mocrotonate were irradiated with pyrex filtered light
from a 125 W Hg lamp in MeOH. A chromato-
graphic work up of the photolysate produced vinyl
ethers 5 and 65 in 15–20% and 3–5% yields, respec-
tively. Mechanistically the phototransformations may
be envisaged to be initiated through hydrogen
abstraction from the OCH2 by the photoexcited C�O
of the pyrone moiety to lead to the formation of
1,4-biradical 3. Subsequent proton capture from the

solvent (MeOH) forms the products; the involvement
of the solvent was evident from the fact that no pho-
toisomerization could be observed when the reaction
was carried out in an aprotic solvent like C6H6. It is
important to mention here that the photolysis of allyl
ethers6 7 and 8 did not give any photoisomerized
products but instead the tetracyclic products 9 and 10
were obtained, compounds similar to those formed
during the photolysis of 11 and 12.7 Even 8 where
the initially produced biradical is delocalized to pro-
duce a very stable tertiary radical 13, did not experi-
ence any isomerization.

Thus it can be inferred that it is the presence of an
electron captive group like COOCH3 that is essential
for such photoisomerization, a fact further corrobo-
rated by the unreactivity of the cinnamyloxy deriva-
tive 14 as reported by Sumathi et al.1h The
importance of this photoconversion is that an allyl
ether has been transformed into a vinyl ether. The
rearrangement of �,�-unsaturated enones8 to their
�,�-unsaturated isomers through a process of hydro-
gen abstraction is known. A few routes for the syn-
thesis of vinyl ethers are available9 but as far as we
know this is the first photochemical route for the
syntheses of vinyl ethers.
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4. 2a–g were synthesized through condensation of 5-chloro-2-
hydroxyacetophenone and the appropriate aromatic car-
boxaldehyde followed by cyclization (H2O2/NaOH) and
O-alkylation of the resulting 3-hydroxychromone 1a–g
with methyl-�-bromocrotonate (K2CO3/CH3COCH3); 2a.
Yield (60%), mp 120–21°C; �max THF 319 nm (8000), 230
nm (28800) �max cm−1 1727 (C�O), 1645 (C�O), 1609
(C�C); 1H NMR (300 MHz, CDCl3) � 8.21 (1H, d, Jm 2.4
Hz, H-5�), 8.02 (2H, m, H-2��,6��), 7.64 (1H, dd, Jm,o 2.4
Hz, 9.0 Hz, H-7�), 7.52 (4H, m, H-8�,3��,4��,5��), 6.95 (1H, t
{d}, J3,4 4.8 Hz, J3,2 15.6 Hz, H-3), 6.12 (1H, t {d}, J2,3

15.6 Hz, J2,4 1.4 Hz, H-2), 4.80 (2H, dd, J4,3 4.8 Hz, J4,2

1.4 Hz, H-4), 3.73 (3H, s,-COOCH3); 2b–g were identified
similarly; 2b. Yield (62%), mp 138–140°C; 2c. Yield (55%),
mp 135–137°C; 2d. Yield (60%), mp 103–105°C; 2e. Yield
(60%), mp 124–26°C; 2f. Yield (65%), mp 150–152°C; 2g.
Yield (60%), mp 126–28°C.

5. (a) Only 5 could be isolated in a pure state; 6 always
remained contaminated with 5; (b) 5a. mp 110–112°C; �max

THF 303 nm (14 800), 250 nm (22 700); �max cm−1 1750
(C�O), 1646 (C�O); 1H NMR (300 MHz, CDCl3) � 8.23
(1H, d, Jm 2.4 Hz, H-5�), 7.98 (2H, m, H-2��,6��), 7.65 (1H,
dd, Jm,o 2.4 Hz, 9.0 Hz, H-7�), 7.54 (1H, d, Jo 9.0 Hz,
H-8�), 7.49 (3H, m, H-3��,4��,5��), 6.57 (1H, t {d}, J4,2 1.3
Hz, J4,3 12.5 Hz, H-4), 5.24 (1H, t {d}, J3,2 7.4 Hz, J3,4

12.5 Hz, H-3), 3.65 (3H, s, COOCH3), 3.00 (2H, dd, J2,4

1.2 Hz, J2,3 7.4 Hz, H-2); M+ 370/372; (c) 5b. mp 115–
117°C M+ 400/402; 5c. mp 112–114°C M+ 460/462; 5d. mp
103–104°C M+ 360/362; 5e. mp 115–116°C M+ 374/376; 5f.
mp 114–116°C M+ 376/378; 5g. mp 107–109°C M+ 390/
392; (d) The 1H NMR (300 MHz, CDCl3) spectrum of 6
from the mixture of 5 and 6; 6a the aromatic protons were

found similarly placed as in 5a, � 6.42 (1H, t {d}, J4,2 1.4
Hz, J4,3 6.0 Hz, H-4), 4.92 (1H, dd, J3,2 7.0 Hz, J3,4 6.0 Hz,
H-3), 3.75 (3H, s, COOCH3), 3.32 (2H, dd, J2,4 1.4 Hz, J2,3

7.0 Hz, H-2).
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